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Restrict a smooth function to a domain bounded by a smooth surface. We study
the summability of the Fourier integral of this function at points near the boundary
of the domain. € 1995 Academic Press, Inc.

The Gibbs—Wilbraham phenomenon describes the behaviour of the par-
tial sums of a Fourier series in a neighbourhood of a simple discontinuity
of the function expanded. See, e.g., [6] for some history and references. It
1s well known that this phenomenon of “overshooting” arises not only in
the theory of trigonometric Fourier series, but also in a variety of other
expansions. In this paper we want to investigate the Gibbs phenomenon for
the summability of multiple Fourier integrals.

Cramér proved that for the Cesaro C*summability of ordinary Fourier
series there exists a critical index oy, 0 <2, < 1, with the property that for
% <%, the C*means of the Fourier series of discontinuous functions of
bounded variation show the Gibbs phenomenon, but for x> %, the over-
shooting disappears. See [4; 10, IIL11].

For the Bochner—Riesz summability the situation is different: the
Bochner-Riesz means of any order of the Fourier series of discontinuous
functions of bounded variation present the Gibbs phenomenon. See [2].
This is a bit surprising since the Cesaro and the Bochner-Riesz sum-
mability methods are equivalent. Cheng also investigated the Gibbs
phenomenon for the Bochner—Riesz means of double Fourier series of func-
tions of the form f(x, y)=f(x)-f>(y), with f|(x) and f,(y) of bounded
variation over a period.

Golubov studied the Gibbs phenomenon in AN-dimensions for the
Bochner—Riesz means of order 6 > (N —1)/2 (the “critical index” for the
Bochner—Riesz summability) of multiple Fourier series and integrals of
functions of “®-bounded variation™ with discontinuities on a sphere or on
a hyperplane. See [5].

However, the main motivation of our work comes from a series of
apparently unnoticed papers by Weyl published in 1910. See [9]. In these
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papers the author applied his experience with various eigenfunction expan-
sions to several examples of the Gibbs phenomenon. In particular, he
considered the following situation.

Suppose that on the two dimensional sphere {x?+ y?+z?=1} we have
a smooth closed simple curve y that divides the sphere into two open sets
A and B, and suppose that we have two smooth functions f,(P) and f(P)
defined on 4wy and B Uy, respectively. Let

S4(P) if PedA,
S(P)=<f5(P) if PeB,
L(f4(P)+fs(P)) if Pey.

Finally, let {S, f(P)} be the nth partial sum of the spherical harmonic
expansion of the function f(P). At any point of the curve y we can associate
a great circle normal to 7, and the nature of the convergence of the spheri-
cal harmonics {S, f(P)}} on this great circle is the same as the convergence
of the trigonometric Fourier series of the restriction to the great circle of
the function f(P). That is, for the two-dimensional spherical harmonic
expansions of functions with discontinuities along a smooth curve, we have
qualitatively and quantitatively the same Gibbs phenomenon as in one
dimension. If the curve y has a corner or a cusp, the behaviour of the
spherical harmonic expansions is more complicated.

It is the result of Weyl that we want to extend from the spherical
harmonic expansions on the two-dimensional sphere to multiple Fourier
integrals in R". In Section 1 we shall consider the Gibbs phenomenon for
general summability methods of multiple Fourier integrals, and in Section
2 we shall study in more detail the Bochner—Riesz means of double Fourier
integrals. By the way, we shall see that a precise analogue of Weyl’s result
may fail in dimensions three or higher.

Let S(x) be a “kernel” on R", [.vS(x)dx=1, and let {Sg(x)}=
{RVS(Rx)} be the associated family of approximate identities. We shall
study operators of the form

Sk flx)=[  RYS(Ry)f(x=y) dy

=J S(R='1) f(¢) exp(2mix - 1) dt.
R’V



GIBBS PHENOMENON 121

To introduce our first result we briefly recall why and when the Gibbs
phenomenon arises in one dimension.

Suppose that K(x) is a kernel on R, [, K(x)dx=1, and that
Kp(x)=R K(Rx). Then, if x_ . o (x) is the characteristic function of the
interval (— o0, 0), and if x>0,

[ +
Kn* 2 mo(®)=[  RKRx—Ry)dy=] " K(y)dy

Suppose there exists an 4 >0 such that [}* K(y)dy<O0, then in a
neighbourhood of x=0, the point of discontinuity of the function
X(- .0, (x), the graph of the means {K * y,_.. o,(x)} does not converge
to the graph of x_,, o,(x). If some convergence and localization principle
holds, then the Gibbs phenomenon arises not only for the means
{Kg* X(—. 0/(x)}, but also for the means {K * f(x)} of every function
f(x) with simple discontinuities.

In the following we shall often write xe R" as (x,, x,), with x, e R and
x,e RV 1

THEOREM 1. Let m(t) be a bounded even function on R, with the property
that (m(1)— 1)/t is a locally integrable function with Fourier transform
vanishing ar infinity, and suppose that the two kernels, one on R and the
other on R”,

K(x)= jR m(1) exp(2nitx) dt,

S(x) = jﬂ m(|t|) exp(2mit - x) dt,

are in L'(R) and in L' (R"Y), respectively.

Let D be a domain in R™, bounded by a smooth simple closed surface &D.
Assume that the point P= (1, 0) lies on &D, and that the vector n= (1, 0) is
outward normal to éD in P. Let F(x) be a smooth function on R, and let

F(x) on D,
f(x)=< $F(x) on &D,
0 on RY-D.

Then, if the point X is on the outward normal to 8D in P and close to P,
Le, if x=(1+¢,0) with ¢ a positive small number, we have that

SkxS0)=2f(P)-[ " K(s)ds+E(x. R)

640/80/1-10



122 COLZANI AND VIGNATI

and E(Xx, R) converges to zero as R — + co uniformly with respect to x in a
suitably small neighborhood of P.

Note. 2 f(P) is the “jump” of the function f at point P.

In some sense the two kernels K{(x) and S(x), one on R and the other
on R", have the “same” Fourier transform, and this theorem means that
under suitable assumptions the behaviour of the means {Sg * f(x)} for x
in a line 7 is qualitatively and quantitatively the same as the behaviour of
the means { K * H(x)} where H(x) denotes the restriction to the line £ of
the function f(x). The idea of the proof is straightforward.

We first prove the result when the domain is the unit ball centered at the
origin B(O: 1) and the function is the modified characteristic function of
this ball,

1 if ix] <1,
dx)=<L i Ixl=1,
0 if |xj>1

Then we approximate the domain D around the point P = (1, 0) by the
ball B(0; 1), and the function f(x) by 2 f(P) yx(x), a multiple of the charac-
teristic function of this ball, and by a localization argument we deduce that
the behaviour of the means S, * f(x) in points of x of the form (1 +¢, 0)
is completely described by 2 f(P) .Sg * x(x).

The theorem is an immediate consequence of the following lemmas,

LEMMA 1. Let

L Ixi<l,
x(x)=<13 if Ixl=1,
0 if |x|>1.

Then if |x| > 1 we have
+ o
Sexx)={ " K(s)ds+E(x, R)
R()x] 1)

and E(X, R) converges to zero as R— + o0, uniformly with respect to X,
x| > 1.

Proof. The Fourier transform of x(x) is (&)= |&] Y2 Jy,»(2n|&]) and
by the Fourier inversion formula for radial function we have

) . + 0
2lx] =¥ B2 [ T (200) Jin - aya (2l 1) dr = ()

0
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Hence, if |x| > 1,
+
Sexx(x)=22RIx| " ¥ D2 [ [m(r) 1]
4]

XJnp (2RRE) (v 2y (2R x| 1) dt.

The asymptotic expansion J, (1) =./2/nt cos(t —am/2 — n/4) + (¢ 37,
yields

I (20Rt) J (v 2)2(20R|x| t)

cos(2nRt — n(N + 1)/4) cos(2nR|x| t — (N — 1)/4)
Rt

=T[72|Xl —1/2

+ C((R1)~2).

Splitting the interval of integration into (O, R™')U(R"!, + ), one
realizes that the first interval gives a vanishing contribution, as R — + .
Because of the assumptions on the function m(¢), the integral
R [2% |(m(t)— 1)/¢*| dt vanishes also as R — + co. Then

Sg*x(x)

> 21 [ 1]
T 0

x cos(2nRt — (N + 1)/4) cos(2nR|x| t — (N — ])/4)?

sin(2aR(jx| — 1) 1)
p dt

= x|~ b2 J(: " —m(t)]

+ | x| —(Nfl)wzj

T [—m—(—%ilcos(ZnR(lxl + 1} t—aN/2)dt

~|x| - —1)‘,"2J‘+I [1—m(5)] sin(2nR(|x| —1) t)dt
0 nt
2 f1 Lypr= in(2nR()x| — |
=pat v 2 [ gy TR0 .

Recalling that sin(2nAt)/nt is the Fourier transform of the characteristic
function of the interval [ — A4, + 4] and that m(|¢t|) is the Fourier trans-
form of the function K{(s), we thus obtain,

+ ¢
Sg*x(x) =[x —(V= b2 {%_%J K(s) L= R(xI — 1}, + R(|x] - 1))(5) dS}

o

=|x| ™~ ')"‘ZJ‘ . K(s)ds.

R(|x|—1)
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We finally observe that either |x| is close to one, or the integral
[ rio_ 1y K(s) ds is small. ]

Let ¥ '={xeR":|x|=1} be the unit sphere in R equipped with
normalized surface measure do. The spherical means f(x;t) of a function
f(x) locally integrable on R" are defined by

J(x;t)= fs~’|f(.x+ ta) do.

LEMMA 2. Let g(x)=f(x)—2f(P) x(x). Then the spherical means g(x; t)
at points x = (1 + ¢, 0), ¢ suitably small, satisfy the estimates

\ﬁ if 0<itr<2e,
<cdt if 2e<t<l,
1 if 1<t

U gix+1o)do
SN—I

The above constant can be taken independent of ¢, ie., of x.

Proof. 1f we intersect a surface of equation {x,=1+[x,|? P(x,)
+1x,° Q(x3)}, P(xy) and Q(x,) suitable bounded functions in a
neighbourhood of the origin, with a sphere of center (1 +¢, 0) and radius
t, with O <e <1t and ¢ and ¢ suitably small,

xp=14(x,]2 PLxy) + 1x,1° Qx,),
x,=1+¢+tcos(2n9),
|, [ = [sin(2n3)],

we obtain as a solution cos(2n9) = —¢/t + ((¢), whence
1 oJ if <2,
= — A —
= t5 Arcos(—e/t)+ {Cf(t) if 2e<t.

Note that in the first approximation the angle $ does not depend on
P(x,) and Q(x,), ie., it is approximatively the same for every surface
which is normal to the x, axis at the point P=(0, 1).

If we apply this observation to the surface D and to the sphere of center
0 and radius 1, we realize that the surface measure of the set of ¢ S% !
such that x+ g is in D — B(0; 1) or in B(0; 1)— D is small,

Jtooif <2

[{eeSY ':x+toe(D— B(0;1))u(B(0; l)—D)}|<c{z i 2e<t
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On the other hand, in D B(0; 1) we have |g(y)| <|Vgllvi=|y— Pl,
hence if x + to is in D~ B(0; 1) we have that |g(x+to)| <c
Integrating these inequalities we obtain the thesis. []

LEMMA 3. Let g(x)=f(x)—2f(P) x(x). Then if x=(1+¢,0) and ¢ is
suitably small we have that { Sz * g(x)} converges to zero, as R — + . The
convergence Is uniform with respect to ¢ in a suitable right neighbourhood

of 0.

Proof. Using polar coordinates (and a small abuse of notation since S
is radial) we can write the convolution Sy * g{(x) as

N2

I'(N/2)

+ oo
Spxg(x)= L RVS(R) g(x; 1) 181 dr.

Since, by our assumption, the kernel S(x) belongs to L' (R"), the lemma
follows from the estimates on the spherical means g(x;?) and standard
arguments. |

For the proof of the previous theorem we assumed that the multiplier
(m(t)— 1)/t is locally integrable and has Fourier transform vanishing at
infinity. This is not disturbing, since for almost every reasonable function
m(t) we have these properties; e.g., take m(r) Holder continuous of any
order and with compact support. We also assumed that the two kernels
K(x) and S(x) are in L'(R) and in L'(R"), respectively. This is a more
serious restriction, that could perhaps be weakened, but some assumptions
on these two kernels have to be made. To explain this point we study now
in more detail the Gibbs phenomenon for the Bochner—Riesz summability
methods of multiple Fourier integrals.

The Bochner-Riesz means of order 4 >0 of a test function f(x) defined
on R" are defined via the Fourier transform by

(85 % )" (&)= (1 — R 212 F(&).

These means can also be defined via the convolution with the radial
kernels

Se(x)=R"n°T G+ 1)|Rx| 7°~ "2 J;, yy(2n|Rx]).

See [1, 7].
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If & > (N —1)/2 (the “critical index” for the Bochner—Riesz summability),
the kernels {S%(x)} belong to L'(R"), and the hypothesis of the previous
theorem is satisfied. In the next theorem we want to consider the
Bochner-Riesz means of functions in the two-dimensional plane, below this
critical index.

THEOREM 2. Let D be a domain in R?, bounded by a smooth simple
closed curve 8D. Assume that the point P=(1,0) lies on D, and that the
vector n= (1,0} is outward normal to dD in P. Let F(x) be a smooth
function on R?, and let

F(x) on D,
fx)=<1F(x) on @D,
0 on R*-D.

Then if 6 =0, if ¢ is a positive small number, and if x = (1 +¢, 0), we have
that

+ 0
S3x S(X)=2/(P)-2 " n I+ 1) |

2rR({x| — 1)
x5 02 0 a(s) ds+ E(x, R),

and E(x, R) converges to zero as R — + oo, uniformly with respect to X in
a suitably small neighborhood of P.

The proof of this theorem is only a bit more complicated than the proof
of Theorem 1, and it is a consequence of the following lemmas.

LEMMA 4. Let

1 ifoIxl<l,
wWx)=<3 i xl=1
0 if ix|>1.
Then, if |x| > 1 we have
+ oo
S‘Zz * x(x)=2°""27" 12+ 1) s ”2J(5+”2(s) ds+ E(x, R),
2rR(Ixi — 1)

and E(x, R) converges to zero as R — + o, uniformly with respect to X,
[x] >1.

Proof. Apply Lemma 1 to the function m(t)=(1—-¢2)° . |
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LEMMA 5. Let g(x)=f(x)—2f(P)x(x). Then the spherical means
g(x; 1) at points x =(1 +¢,0), ¢ suitably small, satisfy the estimates

) JUif 0<i<2eg,
j g(1+ ¢+ 1cos(2nd), tsin(2n9)) d9| < { ¢ i 2e<1<1,
o 1 if 1<t

The above constant can be taken independent of ¢, i.e., of x.

Proof. Same as that for Lemma 2. ||

LEMMA 6. The spherical means t — g(x;t) may not be continuous func-
tions of t, but they have bounded variation on R™. The total variation of
these spherical means can be bounded independently of x.

Proof. The proof that the total variation of the spherical means of the
characteristic function y(x) is finite is immediate.

We now consider the spherical means 7 — f(x; t). The variation of these
means is controlled by |Vf| L= and by | f|l « and the variation of the
domain of integration. Observe that if 6D contains an arc of the circle with
center x and radius ¢, the function 7 — f(x; ¢) may be discontinuous.

Suppose for simplicity that the intersection of the domain D with the
circle of center (x,, x,) and radius ¢,

x, + t cos(2nd),
X5+ 1 sin(2n8),

consists of a single arc, ie., Y (1) <9< ¢(z). Then

d e
= " flx, + 1 cos(2n8), X2+ tsin(2n3))d9l
(1)

(1)
<[77 VSf(x, +cos(2n8), x, + 1 sin(278))} d9
(1)

+ | f (3, + t cos(2my (1)), x, + ¢ sin(2mpr (1)))] ’% Y (r)

d
+ | f(x, + t cos(2re(t)), x5+ t sin(2n(1)))) ‘JI (p(l)‘ .

The proof of the previous lemma shows that when ¢ is suitably small,
W(t) and @(t) are piecewise monotone. In general |dy| and |dg| are
dominated by ds/2nt, where ds is the length element of ¢D. Hence the two
functions (1) and ¢(7) are of bounded variation. |J
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LeEMMA 7. Let g(x)=f(x)—2f(P)x(x). Then if x=(1+¢,0) and ¢ is
suitably small we have that

. +
S xg(x)=2n' IO+ 1) R [ 1700, (2nRn) g(x; 1)
0

converges to zero, as R— +o0. The convergence is uniform with respect to
¢ in a suitable right neighbourhood of 0.

Proof. Let 5 be a small positive constant. Using the estimate
|Js541(s) <cs°"! we have

R1-1
Rli&fo t7°Js. 1 (2nRe)| | g(x; 0)| dt

Rn-1
SCRZJ |g(x; 0)| tdt
0

<cR™ sup  |g(x; 1))
O<r<RT!
By the estimates on |g{x; t)] in the previous lemmas the above quantity
goes to zero as R — + 0.
We estimate the remaining part of the integral using the oscillatory
nature of Bessel functions and the fact that the function g(x;17) is of
bounded variation in r. Define

+oc
A(r):-j 5T, (2ms) ds.
{
By the asymptotics of Bessel functions this (improper) integral is well
defined, and

+ o + o0 d
RHJ 1705, (2nR1) g(x; z)dt:j 80 = [A(RD] dt.

R1-1 R"
Since A(t) converges to zero as t— + co, and since, by the previous
lemmas, the function g(x; ¢) is of bounded variation in ¢, an integration by
parts shows that the above integral vanishes as R— +w. |

FINAL REMARKS

Remark 1. Let f be a bounded function with support in the N-dimen-
sional torus TV~ {x : —1< x;<$}. Then, besides the Fourier integrals

Sg *f(x)=fRN S(R™'t) f(r) exp(2mix - 1) dt,
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one can also consider the Fourier series

Sex fx)="Y, S(R™'j)](j)exp(2nix-j).
jez™
Under the integrability assumption for S(x), the Poisson summation
formula gives, for x in T", the equiconvergence

ISp* f(x)=8p* f(x) -0 as R— +x.

It is thus possible to reformulate Theorem 1 for Fourier series.

Remark 2. By Theorem 2 the overshooting in the Gibbs phenomenon
for the Bochner—Riesz summability of order & is described by the function

+ oo
B (1) =20+ 2= V2 0(6 + 1) f STV (s) ds.

Observe that when 6 =0, @,(1)= f(_[,*“ (sin(s)/s) ds, so that the Gibbs
phenomenon for double Fourier integrals is quantitatively the same as the
Gibbs phenomenon for Fourier series.

Here are some properties of the functions @;(z).

(i) The maxima and minima of the function @;(¢) are attained at
the zeroes of the Bessel function J;, ,,,(#). As one may reasonably expect,
the abosolute minimum is attained at the first positive zero, say z(d + 1/2),
of Js, 1.2(2); for a proof see [3].

(ii) The absolute minimum @,(z(d + 1/2)) increases with 4. To see
this we use the formula [8]

21*\'

1
[ 5070120 (s — ) w2 d

sié‘v—1‘0’2‘]6+v+1/2(5)=1«(v) .

to obtain
+ oo N )
B, ()= Va2 (G 4y 1)j sTATYIRL L (s)ds
!

S T+v+1) J"Ol( L NERI IR

TTr(6+ 1) I(v)

+ o
% {2‘” 12712 1(§ + 1)J I SO 1)) ds} du

tu

_r4vl) o s N v
=TT, ey
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Since,

I(o+v+1)
)f —y) Ty dy=1,

r(a Y1) (v

D, (1), v>0, is a convex average of the values @,(1 \/}), 0< y <. This
implies that the minimum value of the function @, _ ,(7) is greater than the
minimum value of the function @(¢).

(iii) The Gibbs phenomenon disappears as é — + oo. Indeed, it is
known [8] that z(d +1/2)>6+1/2 and |J;, ,5(s)| < 1. This implies

+
1B, (2(8 + 1/2))] <25+ Y2121 (5 + 1)f §=0=12 gy

s+ 172

<e(2fe).

Remark 3. Theorem 2 does not immediately extend to dimensions
higher than two. The reason is essentially a lack of localization and con-
vergence for the Bochner—Riesz summability of small order 4.

Indeed, suppose we have a closed surface in RY and a point P on this
surface. Also suppose that this surface contains a large piece of a sphere
with center P and radius r. Then the spherical means f(P, t) of a function
which is different from zero inside the surface and equal to zero outside
may not be continuous at =r. Now consider the Bochner-Riesz means

g ACR VIR

o * — pN2-3
SR*f(x)=R [(N}2)

f(-x, t) J5+N/'2(27TR[) ,N;’Zva_] d[

When x=~ P and ¢=r the integral gives a contribution which is of the
order of R™*2 R~'? because of the decay of the Bessel function
Js+ n2(2nRe) and R~ because of the jump of f(x, ). Thus it is not enough
to cancel the factor R?~?% in front of the integral if N=3 and
d< (N -3)2

In particular, when N =3 and 6 =0 for the partial sums of the Fourier
integrals of the characteristic function of the unit ball in the origin we have

Skt Kigen@=R[ AR S (2nl R

{yi<1}

=4R J [sm(ZnRt) cos(ZnRt)] di= 1 —gsin(ZnR).
n

Note added in proof. L. De Michele and D. Roux have obtained a more general version
of Theorem 1 for kernels which are not radial.
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